Summary of Residents without water (1-6-11)

parties

Tox: No contaminants at levels of concern.

ATSDR: No organics data. Elevated methane, ethane, and ethene. Further characterization recommended.

Name	Survey Summary	Hazardous	Comparison Value	Comparison	Maximum		
		Substances Present*	•	Value Source			
1.	Ex. 6 - Personal Privacy	1)DEHP	1) 600/2,000 ug/L	1)ATSDR	1) 2.3 ug/L		
Ex. 6 - Personal Privacy	water buffalo (well			Child/Adult			
	disconnected) using			Chronic			
	donated bottled water			EMEG			
	for drinking. Delivery						
	of water to buffalo	2)Glycols	2) 8,000/30,000	2)ATSDR	2) 4700J ug/L		
	discontinued by donor		ug/L	Child/Adult			
	parties.			Intermediate			
				EMEG			
		3) 2-Methoxyethanol	3) None				
			Established	3) None	3) 1300J ug/L		
		4)Manganese	4) 50 ug/L	4) EPA SMCL	4) 96.5 ug/L		
Tox: Although manganese was detected at a level (96.5 ug/L) that exceeds its Secondary MCL (50 ug/L), this concentration would not be							
	ant threat. The other contam						
	etections of concern (analytical			nanganese. Elevate	ed methane. Biological		
ok. Potential quality control i	ssues with data. Do not use ur	ntil further characterization	recommended.				
2. Ex. 6 - Personal Privacy	Ex. 6 - Personal Privacy	Arsenic	3/10 ug/L	ATSDR	1.8J ug/L		
Z. [LX. 0 - Personal Privacy]	water buffalo (well not	Aisenic	3/10 ug/L	Child/Adult	1.03 ug/L		
	being used) using donated			Chronic Chronic			
	bottled water for drinking.			EMEG			
	Delivery to water buffalo			EMEG			
	discontinued by donor						
	nartics						

DIM0252395 DIM0252404

3. Ex. 6 - Personal Privacy	Ex. 6 - Personal Privacy	1)Glycols	1)8000/30,000 ug/L	1) ATSDR	1)~1620 ug/L
Ex. 6 - Personal Privacy	water buffalo (well not			Child/Adult	
	being used) using	2) 2-Methoxyethanol		Intermediate	
	donated bottled water			EMEG	
	for drinking. Delivery	3) Arsenic			
	to water buffalo		2)None Established	2) None	2) 1100J ug/L
	discontinued by donor	4) Mangenese			
	parties. Pumping water		3) 3/10 ug/L	3) ATSDR	3) 2.4J ug/L
	from the creek to the	5) Sodium		Child/Adult	
	water buffalo			Chronic	
				EMEG	
			4) 50 ug/L	4) EPA SMCL	4) 76J ug/L
			5) 20,000 ug/L	5) EPA	5) 110,000 ug/L
				Drinking	
				Water	
				Advisory	

TOX: Sodium (110,000 ug/L) exceeds its Secondary MCL, which is based on aesthetics, as well as the safe level of intake for individuals on sodium-restricted diets. From a health perspective, the detected level of sodium could be a concern for hypertensive individuals.

Manganese (76 ug/L) exceeds its Secondary MCL, but does not pose a threat.

ATSDR: Glycol compound detections of concern (analytical detection issues as we've discussed). Elevated manganese. Elevated sodium. Elevated methane. Biological ok. Do not use until further characterization recommended.

DIM0252395 DIM0252405

			4) 0000/00 000	4) (4) 6007 /7	
Craig and Julia	4 adults, no children,	1) Glycols	1) 8000/30,000	1) ATSDR	1) 630J ug/L	
Sautner	water buffalo (well not		ug/L	Child/Adult		
	being used) using		_	Intermediate		
	donated bottled water for			EMEG		
	drinking. Delivery to			LIVILO		
			0) 37	0) 37	a) 0007 /7	
	water buffalo	2) 2-Methoxyethanol	2) None	2) None	2) 880J ug/L	
	discontinued by donor		Established	Established		
	parties.					
		3) Arsenic	3) 3/10 ug/L	3) ATSDR	3) 7.2B ug/L	
		-,	-,	Child/Adult	-,8-	
				Chronic		
				The second secon		
				EMEG		
		4) Mangenese	4) 50 ug/L	4) EPA SMCL	4) 628 ug/L	
		5)Sodium	5) 20,000 ug/L	5) EPA	5) 82,900 ug/L	
			, , ,	Drinking	, , ,	
				Water		
				Advisory		
Toy a Similar to above (Pc	osidant 2) sadium was absar	wad at this residence (9'	2 000 ug/L) in aveass s		ICI Managanasa (628	
Tox:a Similar to above (Resident 3), sodium was observed at this residence (82,900 ug/L) in excess of its Secondary MCL. Manganese (628						
ug/L) also exceeded its Secondary MCL; exposure to this concentration would yield a Hazard Quotient of approximately 2.						
ATSDR: Glycol compound detections of concern (analytical detection issues as we've discussed). Elevated manganese. Elevated methane. Biological concern. Potential quality control issues with data. Do not use until further characterization recommended.						
concern. Potential quality col	ntroi issues with data. Do not t	use until turtner characteri	zation recommended.			
	Fx 6 - Personal Privacy	1) Arcanic	1) 3/10 µg/I	1) ATSDP	1) 1 3 µg/I	

5. Ex. 6 - Personal Privacy	not using water buffalo , using well water for everything but drinking and cooking buying	1) Arsenic	1) 3/10 ug/L	1) ATSDR Child/Adult Chronic EMEG	1) 1.3 ug/L
	their own bottled water for drinking and cooking. High sediment noted in their filter.	2) Mangenese	2) 50 ug/L	2) EPA SMCL	2) 212 ug/L

Tox: Manganese (212 ug/L) exceeded its Secondary MCL, but does not pose a threat.

ATSDR: No organics data. Elevated manganese. Biological concern. Do not use until further characterization recommended.

DIM0252395 DIM0252406

6. Ex. 6 - Personal Privacy	Ex. 6 - Personal Privacy	1) DEHP	1) 600/2,000 ug/L	1) ATSDR	1) 22 ug/L
	Ex. 6 - Personal Privacy water buffalo			Child/Adult	
	(well not being used)			Chronic	
	using donated bottled			EMEG	
	water for drinking.				
	Delivery to water	2) Arsenic	2) 3/10 ug/L	2) ATSDR	2) 6.5 ug/L
	buffalo discontinued by			Child/Adult	
	donor parties.			Chronic	
				EMEG	
		3) Mangenese	3) 50 ug/L	3) EPA SMCL	3) 669 ug/L
		4) Sodium	4) 20,000 ug/L	4) EPA	4) 131,000 ug/L
				Drinking	
				Water	
TOY DELID (22 /L)	1 '- 1607 (6 /7) - 1		. 1 1/51 /5	Advisory	11 (15 04)

TOX: DEHP (22 ug/L) exceeds its MCL (6 ug/L) and also its risk-based screening level (7.1 ug/L, set at an excess cancer risk of 1E-04).

Long-term exposure to this level of DEHP would pose a cancer risk of approximately 3E-04; this would be considered an imminent and substantial threat. Additionally, sodium (131,000 ug/L) exceeds its Secondary MCL and could pose a threat to sodium-sensitive individuals.

Note that Ex. 6 - Personal Privacy

ATSDR: Limited organics data. Elevated manganese and sodium. Elevated methane. Biological concern. Do not use until further characterization recommended.

7. Ex. 6 - Personal Privacy	Ex. 6 - Personal Privacy Ex. 6 - Personal Privacy water buffalo (well not being used) using donated	1) Glycols	1) 8000/30,000 ug/L	1) ATSDR Child/Adult Intermediate EMEG	1) 3400J ug/L
	bottled water for drinking. Delivery to water buffalo discontinued by donor parties.	2) Arsenic	2) 3/10 ug/L	2) ATSDR Child/Adult Chronic EMEG	2) 3.1 ug/L
		3) Mangenese	3) 50 ug/L	3) EPA SMCL	3) 1360 ug/L

TOX: Manganese was detected at a level (1360 ug/L) that generates a Hazard Quotient of approximately 4. This represents an imminent and substantial threat. Note that

Ex. 6 - Personal Privacy

ATSDR: Glycol compound detections of concern (analytical detection issues as we've discussed). Elevated manganese. Biological concern. Do not use until further characterization recommended.

DIM0252395 DIM0252407

8.	Ex. 6 - Personal Privacy	1)DEHP	1) 600/2,000 ug/L	1) ATSDR	1) 2.61 ug/L
Ex. 6 - Personal Privacy	Ex.6-Personal Privacy water buffalo			Child/Adult	
	disconnected. Well			Chronic	
	back in use for non-			EMEG	
	potable uses. Bottle				
	water used for drinking	2)Arsenic	2) 3/10 ug/L	2) ATSDR	2) 37 ug/L
	and cooking. Resident		,	Child/Adult	, ,
	installed filter system			Chronic	
	(not sure it is certified			EMEG	
	for potential				
	contaminants)	3)Manganese	3) 50 ug/L	3) EPA SMCL	3) 413 ug/L
			,	,	,
		4)Sodium	4) 20,000 ug/L	4) EPA	4) 36,800 ug/L
			,	Drinking	
				Water	
				Advisory	

TOX: Arsenic (37 ug/L) was observed at a concentration that would pose a long-term cancer risk of 8E-04. This represents an imminent and substantial threat. Additionally, the detected concentration of arsenic exceeds its MCL (10 ug/L). Note that Ex. 6 - Personal Privacy location.

ATSDR: Glycol compound detections of concern (analytical detection issues as we've discussed). Elevated manganese. Elevated sodium. Biological concern. Do not use until further characterization recommended.

Overall ATSDR statement

ATSDR's preliminary public health evaluation of the private well water data at this time remains as summarized in our 12/29/11 Record of Activity document. We concluded that considering the maximum levels detected in these wells and the potential quality control issues, a possible chronic public health threat for prolonged use of the water from at least some of these wells exits. We recommended not using the water until further characterization could better establish the existence of a public health threat.

DIM0252395 DIM0252408

st Note, other chemicals of concern to ATSDR are present in all of these wells.